ООО «Теплообменник»

Подбор и поставки теплообменного оборудования, с точным расчётом под конкретные техпроцессы, от команды инженеров на острие прогресса.

Решения для типовых задач.
Нестандартные задачи: охлаждение г:्छвна бабочек слезами фей.

3 собственных производства:

- Качество соответствует стандартам ЕAC.
- И подтверждено аккредитованными в РФ лабораториями.
- Гидравлические испытания и полный комплект документации для каждого теплообменника.
- Гарантия на все оборудование 12 месяцев, на ЗИП 6 месяцев. Расширенная гарантия по запросу.

Берём на себя ответственность:

Обучение и техническая поддержка.
Гарантийное и постгарантийное обслуживание.

Особые условия

Партнёрам и дилерам.
Проектным институтам
Монтажным организациям.
Сервисным компаниям

Сферы применения

Охлаждение майнинг-ферм

Солнечные панели и тепловые насосы

Паяные теплообменники

TT25

TT15
TT18
TT20

\qquad

TT95

TT190

TT112

TT130

TT520

Параметры

Модель	Paбочее давление	Испытательное давление Test pressure MPa	Рабочие температуры Design temperature ${ }^{\circ} \mathrm{C}$		$\begin{aligned} & \text { Мах кол-во } \\ & \text { пласиин } \\ & \text { Maximum number } \\ & \text { of pales } \end{aligned}$	ОбьёM канала	Максимальный расход Maximum flow $\mathrm{m}^{3} / \mathrm{h}$	Варианты исполнения Modifications
TT-E12	3.0/4.5	4.5/6.75	$-50 /+200$	4	50	0.007	3	R
TT14	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.026	4.5	R, RZ, SS, Z
TT15	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.03	4.5	R, RZ, Z
TT18	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.032	4.5	R, RZ, Z
TT20	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.039	4.5	R, RZ, SS, Z
TT-E22	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.015	10	R
TT25	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.028	13	R, RZ, Z
TT27	3.0/4.5	4.5/6.75	$-50 /+200$	4	120	0.054	13	C, R, RZ, S, SS, Z
TT30	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.028	13	Q, R, RZ, Z
TT36	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	0.06	4.5	R, RZ, Z
TT39	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	$\begin{aligned} & \text { F1/F2 - } 0.047 \\ & \text { F3/F4 - } 0.041 \end{aligned}$	4.5	Q, R, RZ, Z
TT45	3.0/4.5	4.5/6.75	$-50 /+200$	4	60	$\begin{aligned} & \text { F1/F2-0.066 } \\ & \text { F3/F4-0.044 } \end{aligned}$	12	R, RC
TT50	3.0/4.5	4.5/6.75	$-50 /+200$	4	120	0.095	16	$\begin{gathered} \text { C, R, RC, RZ, } \\ \text { S, SS, Z } \end{gathered}$
TT56	3.0/4.5	4.5/6.75	$-50 /+200$	4	120	0.113	18	$\begin{gathered} C, R, R C, R Z, \\ S, Z \end{gathered}$
TT62	3.0/4.5	4.5/6.75	$-50 /+200$	4	120	0.085	16	Q, R, RC, RZ
TT95	3.0/4.5	4.5/6.75	$-50 /+200$	10	240	0.21	51	$\begin{gathered} C, R, R C, R Z, \\ S, S S, Z \end{gathered}$
TT112	3.0/4.5	4.5/6.75	$-50 /+200$	10	240	0.18	47	Q, R, RC, RZ
TT130	3.0/4.5	4.5/6.75	$-50 /+200$	10	270	0.22	32	$\begin{gathered} C, R, R C, \\ R Z, Z \end{gathered}$
TT190	3.0/4.5	4.5/6.75	$-50 /+200$	20	240	0.39	110	$\begin{gathered} C, R, R C, R Z, \\ S, Z \end{gathered}$
TT450	3.0/4.5	4.5/6.75	$-50 /+200$	20	270	0.86	200	$\begin{gathered} C, R, R C, R Z, \\ S, Z \end{gathered}$
TT520	3.0/4.5	4.5/6.75	$-50 /+200$	20	270	0.98	200	$\begin{gathered} C, R, R C, R Z, \\ S, Z \end{gathered}$

Примечание

1. Скорость $1 \sim 5 \mathrm{~m} / \mathrm{c}$;

2. Базовые исполнения теплообменнников:

C - комбинированные штуцера разных размеров;
R - фреоновое исполнение;
Q - дистрибьютор;
RZ - фреоновое, разнесенное исполнение;
S - паровое исполнение;
SS - теплообменник паянный нержавеющим припоем;
Z - разнесенное исполнение.
 $-$

Модель Model	$\underset{(\mathrm{mm})}{\mathrm{L}}$	$\underset{(\mathrm{mm})}{\mathrm{W}}$	$\underset{(\mathrm{mm})}{\mathrm{C}}$	$\underset{(\mathrm{mm})}{\mathrm{D}}$	$\begin{gathered} R \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} F \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~mm}) \end{gathered}$	Macca Weight kg	Площадь m² Heat exchange area
TT-E12	152	74	120	42	16	$8+1.18 * n$	4~6	$20 \sim 30$	M8	$0.4+{ }^{*} 0.02$	0.012*(n-2)
TT14	210	74	172	40	16	$10+2.18 * n$	4~6	$20 \sim 30$	M8	$0.7+{ }^{*} 0.05$	$0.014^{*}(\mathrm{n}-2)$
TT15	195	85	154	42	18	$10+2.18 * n$	4~6	$20 \sim 30$	M8	$0.6+{ }^{*} 0.05$	$0.015 *(n-2)$
TT18	249	74	214	40	16	$10+2.18 * n$	$4 \sim 6$	$20 \sim 30$	M8	$0.8+{ }^{*} 0.05$	$0.018^{*}(\mathrm{n}-2)$
TT20	315	74	278	40	16	$10+2.18 * n$	4~6	$20 \sim 30$	M8	$1.54+{ }^{*} 0.06$	0.02*(n-2)
TT-E22	310	74	278	42	16	$8+1.18 * n$	4~6	$20 \sim 30$	M8	$0.8+n^{*} 0.035$	$0.022^{*}(\mathrm{n}-2)$
TT25	322	92	270	46	23	$9+1.51$ * n	4~6	$20 \sim 30$	M8	$1.2+{ }^{*} 0.07$	$0.025^{*}(\mathrm{n}-2)$
TT27	310	111	250	50	28.5	$\begin{array}{\|l\|} \text { 3.0: } 9+2.21 * n \\ 4.5: 11+2.21 * n \end{array}$	5	$20 \sim 30$	M8	$2+n^{*} 0.09$	$0.027^{*}(\mathrm{n}-2)$
TT30	322	92	269	39	23	$9+1.51$ * n	5	$20 \sim 30$	M8	$1.2+n^{*} 0.07$	$0.03 *(\mathrm{n}-2)$
TT36	466	74	432	40	16	$10+2.18 * n$	4~6	$20 \sim 30$	M8	$1.3+n^{*} 0.1$	$0.036 *(n-2)$
TT39	332	121	$\begin{gathered} 279 \\ \text { F3: } 293 \end{gathered}$	$\begin{gathered} 68 \\ \text { F3: } 75 \end{gathered}$	$\begin{array}{\|c\|} \hline 26.5 \\ \text { F3:19.5 } \end{array}$	$9+1.57 * n$	5	$20 \sim 30$	M8	$1.5+n^{*} 0.1$	$0.039^{*}(\mathrm{n}-2)$
TT45	376	119	329	72	23	$10+1.6 * n$	6	$20 \sim 30$	M8	$1.5+n^{*} 0.11$	$0.045 *(n-2)$
TT50	526	111	466	50	30	$\begin{aligned} & \text { 3.0: } 10+2.31^{*} n \\ & 4.5: 12+2.31^{*} n \end{aligned}$	5	$20 \sim 30$	M8	$2.5+n^{*} 0.2$	0.052*(n-2)
TT56	504	124	444	64	29	$\begin{aligned} & \text { 3.0: } 9+2.21^{*} n \\ & 4.5: 11+2.21^{*} n \end{aligned}$	5	$20 \sim 30$	M8	$2.5+n * 0.16$	$0.056 *(n-2)$
TT62	526	119	470	63	28	$10+1.85 * n$	6	$20 \sim 30$	M8	$2.5+{ }^{*} 0.16$	0.062*(n-2)
TT95	616	191	519	92	48.5	$\begin{aligned} & \text { 3.0: } 12+2.51^{*} n \\ & 4.5: 14+2.51^{*} n \end{aligned}$	6	$30 \sim 40$	M8	$6+{ }^{*} 0.4$	0.095*(n-2)
TT112	615	190	519	92	48	$\begin{array}{\|l} \text { 3.0: } 12+2.11^{*} n \\ 4.5: 14+2.11 * n \end{array}$	6	$30 \sim 40$	M8	$6+{ }^{*} 0.4$	$0.112^{*}(\mathrm{n}-2)$
TT130	529	247	456	174	36.5	$12+2.31$ * n	6	$30 \sim 40$	M8	$13+{ }^{*} 0.4$	0.13*(n-2)
TT190	695	307	567	179	55	$14+2.61$ *n	6	$30 \sim 52$	M12	$13+n * 0.7$	$0.19 *(\mathrm{n}-2)$
TT450	1200	420	1000	220	100	$16+2.68 * n$	6	$30 \sim 54$	M16	$33+n * 1.5$	$0.45 *(\mathrm{n}-2)$
TT520	1300	420	1100	220	100	$16+2.62 * n$	6	$30 \sim 54$	M16	$35+n * 1.6$	0.52*(n-2)

Примечание

1. n - количество пластин;
2. Масса включает присоединения и не включает аксессуары (опоры, такелажные петли);
3. Пластины корпуса для моделей TT14, TT15, TT20 могут быть как гладкими, так и рифлёными;
4. Материал рабочих пластин AISI 316L;
5. Материал корпуса и штуцеров AISI 304.

Двухконтурные
 испарители и конденсаторы

Двухконтурные теплообменники в основном применяются как испарители и конденсаторы в чиллерах и тепловых насосах.
Используются со всеми современными хладагентами.
Диагональное направление потоков увеличивает эффективность в сравнении с параллельными моделями и позволяет выдавать максимальные параметры при полной и частичной загрузке.

Параметры

$\begin{gathered} \text { Модель } \\ \text { Model } \end{gathered}$	Рабочее давление Design pressure MPa	Испытательное давление Test pressure MP	Рабочие температуры Design temperaturec'C	$\begin{aligned} & \text { Min кол-во } \\ & \text { ПЛастин } \\ & \text { Minimum number } \\ & \text { of nlates } \end{aligned}$	$\begin{gathered} \text { Мах кол-во } \\ \text { пластин } \\ \text { Maximum number } \\ \text { of plates } \end{gathered}$	Объём канала Single channel volume L	Максимальный расход Maximum flow m^{3}	Направление АОТОКОВ Flow directio
TT-230	3.0	4.5	$-50 /+200$	20	250	0.18	51	Диагональ
TT-250	3.0	4.5	$-50 /+200$	20	300	0.55/0.7	280	Диагональ

Примечание

1. Расход жидкости, указанный в таблице, применим при скорости от 1 до 7 м/сек;
2. Эта серия может быть только медно-паяная.

Принцип работы конденсатора/испарителя

\qquad

Модель Model	$\left\|\begin{array}{c} \mathrm{L} \\ (\mathrm{~mm}) \end{array}\right\|$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{C}}$	$\begin{array}{\|c\|} \hline \mathrm{D} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{G} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{K} \\ (\mathrm{~mm}) \end{gathered}$	$\left\|\begin{array}{c} \mathrm{C} 1 \\ (\mathrm{~mm}) \end{array}\right\|$	$\begin{gathered} \mathrm{G} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{R} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline F \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~mm}) \end{gathered}$	Macca kg Weight	Площадь m^{2} Heat exchange area
TT-230	489	249	400	155	369	166	202.5	184.5	50	41.5	$12+2.2^{*} n$	6	$24 \sim 52$	M8	$16+n^{*} 0.4$	$0.1 *(n-2)$
TT-250	739	322	631.7	205.2	568	224.4	315.85	284	51.5	53	$15+2.6 * n$	6	24~54	M10	$23+$ n*0.9	$0.25 *(n-2)$

Примечание

1. n - количество пластин;
2. Материал AISI 316L;
3. В массу не включен вес дополнительных аксессуаров;
4. D - модель с 2 контурами фреона;

E - модель с 1 контуром фреона;
Q - модель имеет дистрибьютор.

Варианты присоединений

Варианты присоединений

ПРИСОЕДИНЕНИЕ ПОД ПАЙКУ
Данный вид присоединения выполнен из нержавеющей стали AISI 304 для соединения с медной трубой при помощи пайки.
Метод пайки:

1. Очистите соединяемые поверхности;
2. Используйте флюс;
3. Вставьте медную трубу в штуцер;
4. Используйте припой с содержанием серебра не менее 45\%;
5. Температура пайки не более $450{ }^{\circ} \mathrm{C}$ (температура технологической пайки самого теплообменника при изготовлении $450-800^{\circ} \mathrm{C}$);
6. Используйте мокрую ветошь для предотвращения перегрева теплообменника (перегрев теплообменника может нарушить его герметичность).

РЕЗЬБОВЫЕ ПРИСОЕДИНЕНИЯ
Дюймовая резьба соответствует ISO стандартам.
Может быть как цилиндрическая, так и конусная.
Размеры и тип резьбы уточняйте при размещении заказа.
Складская программа предусматривает цилиндрическую резьбу.

ГРУВЛОЧНОЕ СОЕДИНЕНИЕ

Быстросъёмные соединения (типа грувлок или виктуалик) также доступны. Размеры и тип согласовываются при размещении заказа

Для габаритных теплообменников рекомендуются опоры и такелажные петли.
${ }^{\circledR}$
(a)
\qquad

Стандартные соединения паяных пластинчатых теплообменников

Модель	Резьбовое соединение Внешняя резьба Внутренняя резьба								Соединение пайкой										
	PT/NPT/GB								${ }_{\text {MM }}^{\infty} 6$	$\begin{gathered} \varnothing 9.73 \\ \text { MM } \end{gathered}$	$\underset{\text { MM }}{\varnothing 12.9}$	${ }_{\text {NM }}^{16.15}$	${ }_{m \times 19.25}^{\varnothing}$	$\underset{\sim 2}{82.36}$	$\underset{M M}{\varnothing} 25.6$	$\underset{\text { MM }}{\phi 28.8}$	$\underset{\text { мм }}{\varnothing 35.25}$	$\underset{\substack{\varnothing \\ \text { MM }}}{\varnothing 41.5}$	${ }_{\text {mp }} \square_{\text {m }}$
	1/2"	3/4"	$1{ }^{17}$	11/4"	$11 / 2^{\prime \prime}$	$2 "$	$21 / 2^{\prime \prime}$	$3 "$	1/4"	3/8"	1/2"	5/8"	$3 / 4 "$	7/8"	$1 "$	$11 / 8$	" $13 / 8$ "	$15 / 8 "$	$21 / 8{ }^{\prime \prime}$
TT-E12	()								\triangle	\triangle	\triangle								
TT-E22	(0)								\triangle	Δ	\triangle								
TT14	©	(0)							\triangle	\triangle	\triangle	\triangle	\triangle						
TT15	(0)	©							\triangle	\triangle	\triangle	\triangle	\triangle						
TT18	©	()							\triangle	\triangle	\triangle	\triangle	\triangle						
TT20	©	()							\triangle	\triangle	\triangle	\triangle	\triangle						
TT36	()	()							\triangle	\triangle	\triangle	\triangle	\triangle						
TT25	()	©	((0)					\triangle										
TT27	©	()	©	(\triangle	\triangle	\triangle	\triangle	\triangle	Δ	\triangle	\triangle			
TT39	©	©	©	()					\triangle										
TT45	()	()	©	()					\triangle										
TT50	()	©	©	(Δ	\triangle	Δ								
TT56	()	()	©	()					\triangle										
TT62	()	()	©	()					\triangle										
TT95	\bigcirc	()	©	©	((0)	(\triangle	Δ	\triangle	\triangle							
TT112	\bigcirc	©	©	©	©	©	©		\triangle										
TT130	\bigcirc	(0)	©	((©	()		\triangle										
TT190	\bigcirc	©	©	©	(©	(0)	()	\triangle										
Доступно: Овнешняя/внутренняя резьба ○ внутренняя резьба внешняя резьба \triangle пайка																			
Модель	Фланец/Резьбовое соединение									Соединение пайкой									
	()Резьбовое соединение/фланец ОРезьбовое соединение									\triangle Пайка									
	11/2"		$2 "$	21/2"	$3 "$		$31 / 2^{\prime \prime}$	$4 "$		21/8"	$23 / 8{ }^{\prime \prime}$		$25 / 8$ "		$31 / 8$ "	$33 / 8{ }^{\prime \prime}$		4"	
TT 450	\bigcirc		(0)	©	©		(0)	©		\triangle	\triangle		\triangle		\triangle	\triangle		\triangle	
TT 520	\bigcirc			©		()	©		©	\triangle		\triangle		Δ	\triangle		\triangle		\triangle

Типы соединений: соединения под пайку для медных труб, внешняя/внутренняя резьба, быстросъемные соединения, фланцевые соединения, дополнительные штуцера для слива, заполнения, для датчиков температуры и давления.

Возможно изготовление моделей с размерами, количеством, типом присоединений по индивидуальному заказу.

Осушители

Осушители ТТ - это инновационная разработка в области осушения воздуха.
Объединяют в себе первичный охладитель, испаритель и сепаратор.
Теплообменники этой серии при малом размере обеспечивают высокую эффективность осушения.
Сепаратор может идеально удалять влагу из сжатого воздуха, что позволяет отказаться от фильтров-осушителей.

1. Количество пластин сепаратора определяется его рабочей мощностью/расходом сжатого воздуха;
2. Осушитель ТТ объединяет в себе три функции в рамках одной конструкции, что позволяет минимизировать стоимость оборудования для осушения сжатого воздуха;
3. Испаритель имеет асимметричный дизайн пластин, что позволяет улучшить эффективность теплопередачи и уменьшить сопротивление на сжатом воздухе;
4. Специально усиленная конструкция позволяет выдерживать высокие температурные перепады и гарантировать длительный срок эксплуатации.

Параметры

Модель Моdel	Рабочее давление Design pressure MPa	Испытательное давление Test pressure MPa		Рабочие температуры (esign temperaturéC	Дренаж (inch)	
	Ref.	Air	Ref.	Air		
TT-DB15	3.0	1.0	4.5	1.5	$0 \sim+200$	Rc1/2
TT-DB27	2.5	0.8	3.5	1.2	$0 \sim+200$	Rc3/4

Модель Model	Ref. in (inch)	Ref. out (inch)	Air in \& out (inch)	Точка росы dew point temperature	Потеря давления на сжатом воздухе compressed air pressure drop	Снижение температуры на сжатом воздухе compressed air temperature drop	Эффективность осушения mist collection efficiency
TT-DB15	3/8	1/2	3/4	$6^{\circ} \mathrm{C}$	50-80kpa	8-12K	$5 \mu \mathrm{~m}=92 \% 10 \mu \mathrm{~m}=98 \%$
TT-DB27	1/2	5/8	$13 / 8$	$6^{\circ} \mathrm{C}$	50-80kpa	8-12K	$5 \mu \mathrm{~m}=92 \% 10 \mu \mathrm{~m}=98 \%$

Примечание

Для давления сжатого воздуха, превышающего расчётное рабочее давление конструкции моделей 3 в 1, рекомендуем к использованию модели 2 в 1: испаритель/экономайзер, при этом сепаратор и трубы обвязки в комплект поставки не входят. Информация и подбор моделей 2 в 1 предоставляются по запросу.

\qquad

Принцип работы осушителя

Присоединения

ТЕПЛООБМЕННИКВНАЛИЧИИ.РФ

Таблица подбора

Расход $\mathrm{Nm}^{3} / \mathrm{min}$	Модель model	A(n1)/C(n2) number of plates	$\mathrm{B}(\mathrm{n} 3)$ number of plates	Объem фрреона, L refrigerant volume
0.4	TТ-DB15-0.4	$5 / 5$	4	0.07
0.5	TТ-DB15-0.5	$7 / 7$	6	0.1
0.6	TТ-DB15-0.6	$9 / 9$	8	0.12
0.7	TT-DB15-0.7	$11 / 11$	10	0.16
0.9	TT-DB15-0.9	$13 / 13$	12	0.19
1.0	TT-DB15-1.0	$15 / 15$	14	0.22
1.2	TT-DB15-1.2	$17 / 17$	16	0.25
1.4	TT-DB15-1.4	$19 / 19$	18	0.28
1.7	TT-DB15-1.7	$23 / 23$	22	0.34

Примечание

1. $\mathrm{Nm}^{3} / \mathrm{min}=60 \mathrm{Nm}^{3} / \mathrm{h}=35.3 \mathrm{scfm}$;
2. $A=1.5+2.15^{*} n 1$ - испаритель;
3. $\mathrm{B}=18+3.2^{*} \mathrm{n} 3$ - сепаратор;
4. $\mathrm{C}=2+2.15 * n 2$ - первичный охладитель (экономайзер);
5. $\mathrm{A}+\mathrm{B}+\mathrm{C}=21.5+2.15^{*} \mathrm{n} 1+3.2^{*} \mathrm{n} 3+2.15^{*} \mathrm{n} 2$ - толщина осушителя;
6. Масса $=1.2+0.05^{*} n 1+0.05^{*} \mathrm{n} 2+0.03^{*} \mathrm{n} 3$ (кг).

\qquad

Расход $\mathrm{Nm}^{3} / \mathrm{min}$	Модель model	A(n1)/C(n2) number of plates	B (n3) number of plates	Объем фреона, L refigigerant volume
2.1	TT-DB27-2.1	$15 / 15$	16	0.37
2.6	TT-DB27-2.6	$17 / 17$	18	0.42
2.8	TT-DB27-2.8	$19 / 19$	20	0.48
3.8	TT-DB27-3.8	$27 / 27$	28	0.69
4.2	TT-DB27-4.2	$31 / 31$	30	0.8
4.7	TT-DB27-4.7	$35 / 35$	34	0.9
5.0	TT-DB27-5.0	$39 / 39$	36	1.01
5.8	TT-DB27-5.8	$45 / 45$	42	1.17
6.5	TT-DB27-6.5	$53 / 53$	48	1.38

Примечание

1. $\mathrm{Nm}^{3} / \mathrm{min}=60 \mathrm{Nm}^{3} / \mathrm{h}=35.3 \mathrm{scfm}$;
2. $A=0.5+2.2^{*} \mathrm{n} 1$ - испаритель;
3. $\mathrm{B}=19+3.8^{*} \mathrm{n} 3$ - сепаратор;
4. $\mathrm{C}=2+2.2^{*} \mathrm{n} 2$ - первичный охладитель (экономайзер);
5. $\mathrm{A}+\mathrm{B}+\mathrm{C}=20.5+2.2^{*} \mathrm{n} 1+3.8^{*} \mathrm{n} 3+2.2^{*} \mathrm{n} 2$ - толщина осушителя;
6. Масса $=2.65+0.09 * n 1+0.09 * n 2+0.07 * n 3$ (кг).

Алюминиевые осушители сжатого воздуха

Параметры

Модель Model	Холодопроизводительность, кВт Refrigeration capasity, kW	Температура сжатого воздуха на входе, ${ }^{\circ} \mathrm{C}$ Compessed air inlet T, ${ }^{\circ} \mathrm{C}$	Точка росы, ${ }^{\circ} \mathrm{C}$ Dew point, ${ }^{\circ} \mathrm{C}$	Температура сжатого воздухぇ на выходе, ${ }^{\circ} \mathrm{C}$ Compessed air outlet T, ${ }^{\circ} \mathrm{C}$	Сопротивление в осушителе, кПа Pressure drops, kPa	Рабочее давление, МПа Design pressure, Mpa		Испытательное давление, МПа Test pressure, Mpa	
						REF	AIR	REF	AIR
TT-D-AL-6,5	3.7	38	8	25	20	2.5	1.4	3.3	1.9
TT-D-AL-8,5	4	38	8	25	20	2.5	1.4	3.3	1.9
TT-D-AL-10,5	5.3	38	8	25	20	2.5	1.4	3.3	1.9
TT-D-AL-13	5.8	38	8	25	20	2.5	1.4	3.3	1.9
TT-D-AL-15	6.6	38	8	25	20	2.5	1.4	3.3	1.9
TT-D-AL-23	12	38	8	30	20	2.5	1.4	3.3	1.9
TT-D-AL-27	13	38	8	30	20	2.5	1.4	3.3	1.9
TT-D-AL-33	16	38	8	30	20	2.5	1.4	3.3	1.9
TT-D-AL-42	18	38	8	30	20	2.5	1.4	3.3	1.9

Таблица подбора

Расход $\mathrm{Nm}^{3} /$ min	Модель Model	A, mm	B, mm	C, mm	D, mm	E, mm	F, mm	G, mm	H, mm	I	J	K
6.5	TT-D-AL-6,5	314	215	100	220	256	122	461	346	3/4"	11/4"	G2
8.5	TT-D-AL-8,5	345	235	100	220	280	145	505	380	3/4"	$11 / 4^{\prime \prime}$	G2
10.5	TT-D-AL-10,5	369	225	100	260	298	150	488	390	3/4"	11/4"	G2
13	TT-D-AL-13	352	295	100	260	277	150	542	372	3/4"	11/4"	G2
15	TT-D-AL-15	350	410	120	320	277	145	592	372	3/4"	11/4"	DN50
23	TT-D-AL-23	457	337	185	460	420	217	780	645	3/4"	$11 / 4^{\prime \prime}$	DN65
27	TT-D-AL-27	530	478.5	243	466	426	245	1000	666	$11 / 4 "$	11/2"	DN80
33	TT-D-AL-33	574	478.5	243	466	454	275	1024	666	$11 / 4 "$	11/2"	DN80
42	TT-D-AL-42	572	478.5	243	460	476	305	1070	695	11/4"	11/2"	DN100

${ }^{(8)}$
\qquad

Вторичные теплообменники для бытовых газовых котлов

Параметры

Модель		Испытательное давление Test pressure MPa	$\left\lvert\, \begin{gathered} \text { Рабочие } \\ \text { температуры } \\ \text { Design temperatureCC } \end{gathered}\right.$		$\begin{gathered} \text { Мах коп-во } \\ \text { пластин } \\ \text { Maximu } \begin{array}{c} \text { of plames } \end{array} \end{gathered}$	Объём канала Single channel volume L	Максимальный расход Maximum flow $\mathrm{m}^{3} / \mathrm{h}$	Направление потоков Flow direction
TT11	1.6	2.4	0~+100	6	60	0.024	3.6	Параллель Диагональ
TT12	1.6	2.4	0~+100	6	60	0.024	3.6	Параллель Диагональ
TT14	1.6	2.4	0~+100	6	60	0.026	4.3	Параллель Диагональ

Примечание

Вариант базового исполнения теплообменников сталь AISI 304.
Для заказа доступна сталь AISI 316L.

Параллель

Диагональ

TT14

Другие варианты исполнения по запросу.

Модель Моdel	L (mm)	W (mm)	C (mm)	D (mm)	R (mm)	A (mm)	F (mm)	H (mm)	M (mm)	Macca kg Weight	Площадь m^{2} Heau exchange area
TT11	191	74	154	40	17	$9+2.18^{*} \mathrm{n}$	$4 \sim 6$	12	M 5	$0.32+\mathrm{n}^{*} 0.04$	$0.011^{*}(\mathrm{n}-2)$
TT12	193	74	154	40	16.5	$9+2.18^{*} \mathrm{n}$	$4 \sim 6$	12	M 5	$0.32+\mathrm{n}^{*} 0.04$	$0.012^{*}(\mathrm{n}-2)$
TT14	210	74	172	40	16	$10+2.18^{*} \mathrm{n}$	$4 \sim 6$	12	M5	$0.32+\mathrm{n}^{*} 0.05$	$0.014^{*}(\mathrm{n}-2)$

Примечание

1. n - количество пластин;
2. Масса включает присоединения и не включает аксессуары;
3. Пластины корпуса котловых моделей могут быть как гладкими, так и рифлёными;
4. Вариант базового исполнения теплообменников сталь AISI 304;
5. Для заказа доступна сталь AISI 316L;
6. Возможно различное размещение болтов крепления
\qquad

Экономайзеры для бытовых котлов

Параметры

$\begin{gathered} \text { Модель } \\ \text { Model } \end{gathered}$	Рабочее давление Design pressure MPa	$\begin{gathered} \text { Испытательное } \\ \text { давление } \\ \text { Test pressure MPa } \end{gathered}$	$\begin{gathered} \text { Рабочие } \\ \text { температуры } \\ \text { Design temperature }{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Min кол-во } \\ \text { пластин } \\ \text { Minimum number } \\ \text { of plates } \end{gathered}$	$\begin{gathered} \text { Мах кол-во } \\ \text { пластин } \\ \text { Maximum number } \\ \text { of plates } \end{gathered}$	Объём канала Single channel volume L	$\begin{gathered} \text { Максимальный } \\ \text { расход } \\ \text { Maximum flow } \mathrm{m}^{3} / \mathrm{h} \end{gathered}$
TT-Y12	Ni 0.6	Ni 1.0	0~+200	10	44	0.016	5.2

Модель Моdel	L (mm)	W (mm)	D (mm)	A (mm)	H (mm)	Macca kg Weight	Площадь m^{2} Heat exchange area
TT-Y12	145	86	42	$2.4+2.78^{*} \mathrm{n}$	$16 \sim 28$	$0.3+\mathrm{n}^{*} 0.035$	$0.012^{*}(\mathrm{n}-2)$

Примечание

1. n - количество пластин;
2. ТТ-Ү12 никель-паяный экономайзер дымовых газов ;
3. Рабочее давление экономайзера $0,6 \mathrm{MPa}$;
4. Сталь AISI 316L;
5. Требуется специальный конденсатостойкий дымоход и инсталляционный модуль.

Схема работы ЭКОНОМАЙЗЕРА

Экономайзеры

Основная задача экономайзеров ТТ-Ү редуцировать температуру исходящих газов путем нагрева вспомогательного теплоносителя.
Преимущества использования экономайзера:

- утилизация тепла от дымовых газов;
- очистка дымовых газов;
- компактность установки;
- экономия топлива;
- использование энергетических ресурсов с КПД более 100\%.

Параметры

Модель	Рабочее давление Design pressure MPa		Испытательное давление Test pressure MPa		$\begin{gathered} \text { Рабочие } \\ \text { температуры } \\ \text { Design temperature }{ }^{\circ} \text { C } \end{gathered}$	$\begin{aligned} & \text { Min кол-во } \\ & \text { мnacтин } \\ & \text { Minimumnumber } \\ & \text { of plates } \end{aligned}$	$\begin{aligned} & \text { Мах кол-во } \\ & \text { пластин } \\ & \text { Maximum number } \\ & \text { of plates } \end{aligned}$	Объём канала Single channel volume L	$\begin{aligned} & \text { Максимальный } \\ & \text { рacxoд } \\ & \text { мaximum fow } \mathrm{m}^{3} \text { h } \end{aligned}$
	Cu	Ni	Cu	Ni					
TT-Y70	1.0	0.6	1.5	1.0	+20~300	30	140	0.045	59.7
TT-Y150	1.0	0.6	1.5	1.0	$+20 \sim 300$	30	140	0.127	102

Примечание

1. Два типа исполнения: медно-паяный и никель-паяный;
2. Два варианта рабочего давления: S-0,4 MPa и M-0,6 MPa;

Принцип работы экономайзера

\qquad

Размеры

Mодель Model	L (mm)	W (mm)	C (mm)	F (mm)	A (mm)	H (mm)	Macca kg Weight	Площадь m^{2} Неаa exchange area
TT-Y70	425	183	300	91	$12+3.28^{*} \mathrm{n}$	$30 \sim 40$	$8.1+\mathrm{n}^{*} 0.22$	$0.07^{*}(\mathrm{n}-2)$
TT-Y150	690	229	535	114	$12+3.3^{*} \mathrm{n}$	$40 \sim 52$	$17.5+\mathrm{n}^{*} 0.47$	$0.15^{*}(\mathrm{n}-2)$

Примечание

1. n - количество пластин;
2. Материал AISI 316L;
3. В массу не включен вес дополнительных аксессуаров;
4. Требуется специальный инсталляционный кожух, изготавливается под заказ. Необходима консультация нашего специалиста.

Пример инсталляции

Микроразборный теплообменник TT-P27

Теплообменник является разборным.
Может применяться в качестве альтернативы паянному теплообменнику для сред, имеющих повышенное солесодержание и концентрацию твердых веществ.

Примечание

1. n - количество пластин;
2. $A=14+2,5^{*} n$;
3. Материал пластин - AISI 316L;
4. Материал корпуса -09Г2С, покрытие - белый цинк;
5. Уплотнения:

- EPDM - температура до $150{ }^{\circ} \mathrm{C}$
- NBR - температура до $130{ }^{\circ} \mathrm{C}$;

6. Подбор производится, исходя из технических данных Заказчика.

Требуется консультация специалиста.
(8)

Разборные теплообменники

						A	B	C	D
Тип	Площадь пластины, m2	Ду, мм	Рабочее давление, Бар	Максимальное количество пластин	Максимальная масса, кг	Высота, MM	Ширина, MM		$\begin{aligned} & \overrightarrow{3} 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
TT2-1	0.04	32	16	90	70	570	210	381	70
TT2-2	0.08	32	16	90	110	845	210	656	70
TT3-1	0.07	50	$10 \sim 16$	235	250	654	306	394	126
TT3-3	0.15	50	10~16	235	400	954	306	694	126
TT3-5	0.21	50	10~16	235	430	1154	306	894	126
TT4-0	0.18	65	$10 \sim 16$	155	405	640	395	380	192
TT4-1	0.22	65	$10 \sim 16$	250	540	960	395	700	192
TT5-1	0.24	100	$10 \sim 16$	300	800	1123	460	719	225
TT5-6	0.51	100	$10 \sim 16$	230	1100	1772	460	1365	225
TT6-1	0.45	150	$10 \sim 16$	480	1800	1546	608	890	296
TT6-4	0.68	150	10~16	485	2500	1948	608	1292	296
TT6-7	0.9	150	$10 \sim 16$	470	3050	2348	608	1694	296
TT7-2	0.68	200	$10 \sim 16$	600	4500	1797	770	1091	395
TT7-5	1	200	$10 \sim 16$	650	5200	2198	770	1489	395
TT7-7	0.46	200	$10 \sim 16$	650	3700	1497	770	791	395
TT8-0	1.13	250	10~16	550	6500	2319	875	1527	448
TT9-0	0.84	300	$10 \sim 16$	800	7300	1906	970	1080	480
TT9-1	1.26	300	$10 \sim 16$	800	9500	2417	970	1490	480
TT9-3	1.96	300	$10 \sim 16$	800	14000	3043	970	2120	480

Габаритные размеры указаны справочно и носят оценочный характер.
По ТЗ заказчика возможно изготовление корпусов с другими габаритными размерами и различными присоединениями.

Основные материалы пластин

Материал пластин	Толщина пластин, доступная для заказа, мм *	Соответствие Российским материалам
AISI304	$0,5 / 0,6$	$08 \times 18 \mathrm{H} 10$
AISI316L	$0,5 / 0,6$	$03 \times 17 \mathrm{H} 14 \mathrm{M} 3$
AISI321	$0,5 / 0,6$	08 H 18 H 10 T
SMO254	$0,5 / 0,6$	отсутствует
C276	$0,5 / 0,6$	XH65MB
Titanium GR1	$0,5 / 0,6 / 0,8$	BT1-0

* По запросу возможно изготовление других вариантов толщины.

Основные материалы уплотнений

Материал уплотнений	Рабочий диапазон температур
NBR	$-20 / 120^{\circ} \mathrm{C}$
NBR HT	$-20 / 140^{\circ} \mathrm{C}$
EPDM	$-30 / 150^{\circ} \mathrm{C}$
EPDM HT	$-30 / 160^{\circ} \mathrm{C}$
VITON CH	$-10 / 140^{\circ} \mathrm{C}$
VITON G	$-10 / 180^{\circ} \mathrm{C}$

Основные материалы корпуса

$\left.\begin{array}{|l|l|}\hline \text { Деталь } & \text { Материал* }\end{array} \left\lvert\, \begin{array}{l}\text { СТАЛЬ3/ СТАЛЬ20/ 09Г2С/ ПОЛНОЕ ПОКРЫТИЕ } \\ \text { НЕРЖАВЕЮЩЕЙ СТАЛЬЮАІІІ304 }\end{array}\right.\right]$

* По запросу возможно изготовление из других материалов, при наличии технологической возможности.

Подбор оборудования производится специалистами компании «Теплообменник» в соответствии с ТЗ заказчика.

Кожухотрубные теплообменники

Марка	Длина пучка, м	Диаметр корпуса	Площадь теплопередачи, м2	Кол-во трубок	Macca, кг	Присоединение по умолчанию
Теплообменник кожухотрубный ТТ 80	1	89	1.05	42	8	резьбы 25
	1.5		1.575	42	12	резьбы 25
	2		2.1	42	16	резьбы 25
	3		3.15	42	24	резьбы 32
Теплообменник кожухотрубный TT 100	1	108	1.225	49	12	резьбы 25
	1.5		1.8375	49	18	резьбы 25
	2		2.45	49	24	резьбы 32
	3		3.675	49	36	резьбы 32
Теплообменник кожухотрубный TT 130	1	133	1.975	79	14	резьбы 32
	1.5		2.9625	79	21	резьбы 32
	2		3.95	79	28	резьбы 40
	3		5.925	79	42	резьбы 40
Теплообменник кожухотрубный TT 150	1	159	3	120	16	резьбы 40
	1.5		4.5	120	24	резьбы 40
	2		6	120	32	фланцы 50
	3		9	120	48	фланцы 50
Теплообменник кожухотрубный TT 200	1	219	5.925	237	45	фланцы 50
	1.5		8.8875	237	60	фланцы 50
	2		11.85	237	95	фланцы 65
	3		17.775	237	140	фланцы 65
Теплообменник кожухотрубный TT 250	1	273	8.125	325	65	фланцы 65
	1.5		12.1875	325	95	фланцы 80
	2		16.25	325	110	фланцы 80
	3		24.375	325	180	фланцы 100
Теплообменник кожухотрубный ТТ 300	1	327	13.75	550	140	фланцы 100
	1.5		20.625	550	200	фланцы 100
	2		27.5	550	260	фланцы 125
	3		41.25	550	400	фланцы 125
Теплообменник кожухотрубный ТТ 350	1	375	17.5	700	160	фланцы 150
	1.5		26.25	700	220	фланцы 150
	2		35	700	280	фланцы 150
	3		52.5	700	420	фланцы 150

Марка	Длина пучка, м	Диаметр корпуса	Площадь теплопередачи, м2	Кол-во трубок	Масса, кг	Присоединение по умолчанию
Теплообменник кожухотрубный ТТ 400	1	420	28.125	1125	190	фланцы 200
	1.5		42.1875	1125	290	фланцы 200
	2		56.25	1125	390	фланцы 200
	3		84.375	1125	600	фланцы 200
Теплообменник кожухотрубный TT 500	1	530	44.05	1762	260	фланцы 200
	1.5		66.075	1762	380	фланцы 200
	2		88.1	1762	500	фланцы 200
	3		132.15	1762	780	фланцы 200
Теплообменник кожухотрубный TT 600	1	630	62.5	2500	320	фланцы 200
	1.5		93.75	2500	470	фланцы 200
	2		125	2500	590	фланцы 250
	3		187.5	2500	950	фланцы 250

Основные материалы пучка

Материал пластин	Толщина трубы, мм	Соответствие Российским материалам	Диаметр трубок, мм
AISI304	от 0,5 до 3	0,8×12H10т	от 8
AISI321	от 1 до 3	12x18H10т	от 10
AISI316	от 0,6 до 3	08x17H13M2	от 9
AISI316L	от 1 до 3	03×17H14m3	от 9
AISI316Ti	от 1 до 3	$10 \times 17 \mathrm{H} 13 \mathrm{~m} 2 \mathrm{~T}$	от 6
AISI317L	от 1 до 3	08x19н13м3	от 10
AISI904L	от 1 до 3	06н28мдт (морская)	от 10
AISIЭП54	от 1 до 3	$8 \times 216 \mathrm{~m} 2 \mathrm{~T}$	от 10
AISI310S (20x23H18)	от 1 до 3	жаропрочн. до 1100град	от 12
09Г2C	от 2 до 4		от 12
Сталь20	от 2 до 4		от 10
Сталь20Ю4	от 2 до 4		от 10

Основные материалы корпуса

Сталь3
Сталь20
09Г2C
AISI304
AISI321
AISI316

Варианты исполнений

Оголовки: - сварные

- разборные

Рабочие давления: от глубокого вакуума до 120атм
Рабочие температуры: от -60 до 900 градусов
Разборная версия (выемной пучок)

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

Заявитель ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛООБМЕННИК"

Место нахождения: 630088, Россия, область Новосибирская, город Новосибирск, проезд Северный, Дом 28 , Помещение 2
ОГРН 1175476090712
Телефон: 8-800-550-1659 Адрес электронной почты: ooo.teploobmennik@mail.ru в лице Директора Соловьевой Виктории Владимировны
заявляет, что Оборудование теплообменное: теплообменники паяные пластинчатые, серии TT, FS. Изготовитель ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛООБМЕННИК"
Место нахождения: 630088, Россия, область Новосибирская, город Новосибирск, проезд Северный, Дом 28 , Помещение 2
Код (коды) ТН ВЭД ЕАЭС: 8419500000
Серийный выпуск
соответствует требованиям
Технического регламента Таможенного союза ТР ТС 010/2011 "О безопасности машин и оборудования"
Декларация о соответствии принята на основании
Протокола испытаний № 0087-AP-2020 от 27.10.2020 года, выданного Испытательной лабораторией Общества с ограниченной ответственностью «Меридиан» (регистрационный номер аттестата аккредитации POCC RU.32001.04ИБФ1.ИЛ20)
Схема декларирования соответствия: 1 д

Дополнительная информация

раздел 2 ГОСТ 12.2.003-91 "Система стандартов безопасности труда. Оборудование производственное. Условия хранения продукции в соответствии с ГОСТ 15150-69 "Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды". Условия хранения конкретного изделия, срок хранения (службы) указываются в прилагаемой к продукцицтванасопроводительной и/или эксплуатационной документации.

तR ${ }^{2} 4 \mathrm{EHHO}$ A

Соловьева Виктория Владимировна
\longrightarrow (Ф.И.О. завантепе)

Дата региетращти декларации о соответствии: 27.10.2020
®

EH[

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

Заявитель ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛООБМЕННИК"
Место нахождения: 630088, Россия, область Новосибирская, город Новосибирск, проезд Северный, Дом
28, Помещение 2
OГPH 1175476090712
Телефон: 8-800-550-1659 Адрес электронной почты: ooo.teploobmennik@mail.ru в лице Директора Соловьевой Виктории Владимировны
заявляет, что Оборудование теплообменное: теплообменники пластинчатые разборные, серий STR, A, FP, S, HH, TIIP, TИ, TT, TC, NT, VT, NX, M, T, TL, TS.
Изготовитель ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛООБМЕННИК"
Место нахождения: 630088, Россия, область Новосибирская, город Новосибирск, проезд Северный, Дом 28 , Помещение 2
Код (коды) ТН ВЭД ЕАЭС: 8419500000
Серийный выпуск
соответствует требованиям
Технического регламента Таможенного союза ТР ТС 010/2011 "О безопасности машин и оборудования"
Декларация о соответствии принята на основании
Протокола испытаний № 0127-AP-2020 от 27.10.2020 года, выданного Испытательной лабораторией Общества с ограниченной ответственностью «Меридиан» (регистрационный номер аттестата аккредитации РОСС RU. 32001.04 ИБФ1.ИЛ20)
Схема декларирования соответствия: 1 д

Дополнительная информация

раздел 2 ГОСТ 12.2.003-91 "Система стандартов безопасности труда. Оборудование производственное. Условия хранения продукции в соответствии с ГОСТ 15150-69 "Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды". Условия хранения конкретного изделия, срок хранения (службы) указываются в прилагаемой к продукции товаросопроводительной и/или эксплуатационной документации.
Декларания 反 Соөхе Сствии действительна с даты регистрации по 26.10 .2025 включительно.
${ }^{\circledR}$

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ
 ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

Заявитель: ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛООБМЕННИК", Место нахождения: 630088, РОССИЯ, ОБЛАСТЬ НОВОСИБИРСКАЯ, ГОРОД НОВОСИБИРСК, ПРОЕЗД СЕВЕРНЫЙ, ДОМ 28, ПОМЕЩЕНИЕ 2, ОГРН: 1175476090712
В лице: ДИРЕКТОРА СОЛОВЬЕВОЙ ВИКТОРИИ ВЛАДИМИРОВНЫ
заявляет, что оборудование химическое: "Аппараты теплообменные кожухотрубчатые, оборудование химическое: "Аппараты теппообменные юожухотрубчатые, торгован марка: \&TT", «АН», модель: ТТ, АН Изготозитель: ОВЩЕСТВО С ОГРАНИЧЕННОИ ОТВЕТСТВЕННОСТЬЮ 'ЕППООБМЕННИК, Место нахоядения, 630088, РОССИЯ, ОБЛАСТЬ НОВОСИБИРСКАЯ, ГОРОД НОВОСИБИРСК, ПРОЕЗД СЕВЕРНЫЙ, ДОМ 28 ,
ПОМЕЦЕНИЕ 2, Адрес песта осущесталения деятепьности по изготовленио продукции: РОССИЯ. Новосибирская обп, г Новосибирсх, проезд Северный, д. 28, помещ. 2.
Доқумент, в соответствии с которым изготовпена продукция: ТУ 28.25.11-001-44002684-2020
Коды ТН ВЭД ЕАЭС: 8419500000
Серийный выпуск.
Соответствует требованиям TP TC 010/2011 О безопасности машин и оборудования

Декларация о соответствии принята на основании протокола 02.24Е04.2202 выдан 24.06 .2022 испытательной лабораторией "Испьтательная лаборатория Общество с ограниченной ответственностью «Вест», Аттестат аккредитации испьтательной лаборатории № POCC RU.32248.04CEЛО.2.3": Схема декларирования: 1д
Дополнительная информация

Декларация о соответствии действительна с даты регистрации по 23.06.2025 включительно

Регис рационный номер декларации о соответствии: Дата регистрации декларации о соответствии:

EАЭC N RU Д-RU.PA04.B. $44180 / 22$
06.09.2022

